

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING Course Outcomes

Year/Sem: II B.Tech I SEM A.Y:2019-2020

II YEAR- I SEM

Course Name: ELECTRICAL CIRCUIT ANALYSIS-II		
Course Cod	Course Code: EE2101	
EE2101.1	Solve three- phase circuits under balanced and unbalanced condition.	
EE2101.2	Find the transient response of electrical networks for different types of excitations.	
	Find parameters for different types of network.	
EE2101.3	Realize electrical equivalent network for a given network transfer function.	
EE2101.4	Extract different harmonics components from the response of an electrical network.	
EE2101.5	Solve three- phase circuits under unbalanced condition.	
EE2101.6	Solve three- phase circuits under balanced and	

Course Name: ELECTRICAL MACHINES – I		
Course Cod	Course Code: EE2102	
EE2102.1	Assimilate the concepts of electromechanical energy conversion.	
EE2102.2	Mitigate the ill-effects of armature reaction and improve commutation in dc	
	machines.	
EE2102.3	Understand the torque production mechanism and control the speed of dc motors.	
EE2102.4	Analyze the performance of single phase transformers.	
EE2102.5	Predetermine regulation, losses and efficiency of single phase transformers.	
EE2102.6	Parallel transformers, control voltages with tap changing methods and achieve three-	

Course Name: ELECTRONIC DEVICES AND CIRCUITS	
Course Code: EE2103	
EE2103.1	Understand the concepts of Semiconductor Technology. □ □
EE2103.2	Appraise operation of electronic devices. □
EE2103.3	Develop the biasing circuits using the electronic devices.
EE2103.4	Model the amplifier circuits. □
EE2103.5	Analyse the characteristics of the devices. □
EE2103.6	Appraise the construction of electronic devices. □

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

Course Nan	Course Name: ELECTROMAGNETIC FIELDS	
Course Cod	Course Code: EE2104	
EE2104.1	Determine electric fields and potentials using Guass's law or solving Laplace's or	
	Possion's equations, for various electric charge distributions.	
EE2104.2	Calculate and design capacitance, energy stored in dielectrics	
EE2104.3	Calculate the magnetic field intensity due to current, the application of Ampere's law	
	and the Maxwell's second and third equations	
EE2104.4	.determine the magnetic forces and torque produced by currents in magnetic field	
EE2104.5	Determine self and mutual inductances and the energy stored in the magnetic field	
EE2104.6	Calculate induced EMF, understand the concepts of displacement current and	
	Poynting vector	

Course Name:MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS		
Course Code	Course Code: EE2105	
EE2105.1	The Learner is equipped with the knowledge of estimating the Demand and demand	
	elasticities for a product	
EE2105.2	The knowledge of understanding of the Input-Output-Cost relationships and	
	estimation of the least cost combination of inputs	
EE2105.3	To have the knowledge of different Business Units.	
EE2105.4	The Learner is able to prepare Financial Statements and the usage of various	
	Accounting tools for Analysis	
EE2105.5	The Learner can able to evaluate various investment project proposals with the help	
	of capital budgeting techniques for decision making	
EE2105.6	Price Output determination under various market conditions and also to have the	
	knowledge of different Business Units	

Course Name: THERMAL AND HYDRO PRIME MOVERS		
Course Code	Course Code: EE2106	
EE2106.1	Able to draw locus diagrams, waveforms and phasor diagrams for lagging and	
	leading networks.	
EE2106.2	Determine electric fields and potentials using Guass's law or solving Laplace's or	
	Possion's equations, for various electric charge distributions.	
EE2106.3	Calculate and design capacitance, energy stored in dielectrics	
EE2106.4	Calculate the magnetic field intensity due to current, the application of Ampere's law	
	andthe Maxwell's second and third equations	
EE2106.5	.determine the magnetic forces and torque produced by currents in magnetic field	
EE2106.6	Determine self and mutual inductances and the energy stored in the magnetic field	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

Course Name: THERMAL AND HYDRO LABORATORY		
Course Code	Course Code: EE21L1	
EE21L1.1	Able to draw locus diagrams, waveforms and phasor diagrams for lagging and	
	leading networks.	
EE21L1.2	Determine electric fields and potentials using Guass's law or solving Laplace's or	
	Possion's equations, for various electric charge distributions.	
EE21L1.3	Calculate and design capacitance, energy stored in dielectrics	
EE21L1.4	Calculate the magnetic field intensity due to current, the application of Ampere's law	
	andthe Maxwell's second and third equations.	
EE21L1.5	.determine the magnetic forces and torque produced by currents in magnetic field	
EE21L1.6	Determine self and mutual inductances and the energy stored in the magnetic field	

Course Name: ELECTRIAL CIRCUITS LABORATARY		
Course Cod	Course Code: EE21L2	
EE21L2.1	Able to draw locus diagrams, waveforms and phasor diagrams for lagging and	
	leading networks.	
EE21L2.2	Determine electric fields and potentials using Guass's law or solving Laplace's or	
	Possion's equations, for various electric charge distributions.	
EE21L2.3	Calculate and design capacitance, energy stored in dielectrics	
EE21L2.4	Calculate the magnetic field intensity due to current, the application of Ampere's law	
	andthe Maxwell's second and third equations	
EE21L2.5	.determine the magnetic forces and torque produced by currents in magnetic field	
EE21L2.6	Determine self and mutual inductances and the energy stored in the magnetic field	

II YEAR- II SEM

Course Nan	Course Name: ELECTRICAL MEASUREMENTS	
Course Cod	Course Code: EE2201	
EE2201.1	Able to choose right type of instrument for measurement of voltage and current for	
	ac and dc.	
EE2201.2	Able to choose right type of instrument for measurement of power and energy – able	
	to calibrate energy meter by suitable method.	
EE2201.3	Able to calibrate ammeter and potentiometer.	
EE2201.4	Able to select suitable bridge for measurement of electrical parameters	
EE2201.5	Able to use the ballistic galvanometer and flux meter for magnetic measuring	
	instruments	
EE2201.6	Able to measure frequency and phase difference between signals using CRO. Able to	
	use digital instruments in electrical measurements.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

Course Name: ELECTRICAL MACHINES – II		
Course Cod	Course Code: EE2202	
EE2202.1	Able to explain the operation and performance of three phase induction motor.	
EE2202.2	Able to analyze the torque-speed relation, performance of induction motor and induction generator.	
EE2202.3	Able to explain design procedure for transformers and three phase induction motors. • Implement the starting of single phase induction motors.	
EE2202.4	To perform winding design and predetermine the regulation of synchronous generators.	
EE2202.5	Implement the starting of single phase induction motors.	
EE2202.6	Avoid hunting phenomenon, implement methods of staring and correction of power factor with synchronous motor. Text Books: 1. Electrical Machines – P.S. Bhimb	

Course Nan	Course Name: SWITCHING THEORY AND LOGIC DESIGN	
Course Cod	Course Code: EE2203	
EE2203.1	Ability to derive the transfer function of physical systems and determination of overall transfer function using block diagram algebra and signal flow graphs.	
EE2203.2	Capability to determine time response specifications of second order systems and to determine error constants.	
EE2203.3	Acquires the skill to analyze absolute and relative stability of LTI systems using Routh's stability criterion and the root locus method.	
EE2203.4	Capable to analyze the stability of LTI systems using frequency response methods.	
EE2203.5	Able to design Lag, Lead, Lag-Lead compensators to improve system performance from Bode diagrams.	
EE2203.6	• Ability to represent physical systems as state models and determine the response. Understanding the concepts of controllability and observability.	

Course Name: CONTROL SYSTEMS		
Course Cod	Course Code: EE2204	
EE2204.1	Ability to derive the transfer function of physical systems and determination of	
	overall transfer function using block diagram algebra and signal flow graphs.	
EE2204.2	Capability to determine time response specifications of second order systems	
	and to determine error constants.	
EE2204.3	Cquires the skill to analyze absolute and relative stability of LTI systems using	
	Routh's stability criterion and the root locus method.	
EE2204.4	Apable to analyze the stability of LTI systems using frequency response	
	methods.	
EE2204.5	Able to design Lag, Lead, Lag-Lead compensators to improve system	
	performance from Bode diagrams.	
EE2204.6	Ability to represent physical systems as state models and determine the	
	response. Understanding the concepts of controllability and observability.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

Course Name: POWER SYSTEMS-I		
Course Cod	Course Code: EE2205	
EE2205.1	Students are able to identify the different components of thermal power plants.	
EE2205.2	Students are able to identify the different components of nuclear Power plants.	
EE2205.3	Students are able to distinguish between AC/DC distribution systems and also	
	estimate voltage drops of distribution systems.	
EE2205.4	Students are able to identify the different components of air and gas insulated	
	substations.	
EE2205.5	Students are able to identifysingle core and multi core cables with different	
	insulating materials.	
EE2205.6	Students are able to analyze the different economic factors of power generation and	
	tariffs.	

Course Nan	Course Name: MANAGEMENT SCIENCE	
Course Cod	Course Code: EE2206	
EE2206.1	After completion of the Course the student will acquire the knowledge on	
	management functions and organizational behavior.	
EE2206.2	Fter completion of the Course the student will acquire the knowledge global	
	leadership and organizational behavior.	
EE2206.3	Fter completion of the Course the student will acquire the knowledge on	
	management functions, global leadership and organizational behavior.	
EE2206.4	Will familiarize with the concepts of functional management and strategic	
	management.	
EE2206.5	Will familiarize with the concepts of functional management.	
EE2206.6	Will familiarize with the concepts of functional management project management	
	and strategic management.	

Course Nam	Course Name: ELECTRICAL MACHINES - I LABORATORY	
Course Code: EE22L1		
EE22L1.1	To determine and predetermine the performance of DC machines and Transformers.	
EE22L1.2	To determine the performance of DC machines and Transformers.	
EE22L1.3	To control the speed of DC motor	
EE22L1.4	To determine the performance of DC machines.	
EE22L1.5	To achieve three phase to two phase transformation.	
EE22L1.6	To achieve three phase transformation.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

Course Nam	Course Name: ELECTRONIC DEVICES AND CIRCUITS LAB	
Course Cod	e: EE22L2	
EE22L2.1	Able to draw locus diagrams, waveforms and phasor diagrams for lagging and	
	leading networks.	
EE22L2.2	Determine electric fields and potentials using Guass's law or solving Laplace's or	
	Possion's equations, for various electric charge distributions.	
EE22L2.3	Calculate and design capacitance, energy stored in dielectrics	
EE22L2.4	Calculate the magnetic field intensity due to current, the application of Ampere's law	
	andthe Maxwell's second and third equations	
EE22L2.5	.determine the magnetic forces and torque produced by currents in magnetic field	
EE22L2.6	Determine self and mutual inductances and the energy stored in the magnetic field.	

III YEAR- I SEM

Course Name: POWER SYSTEMS	
Course Code: EE3101	
Analyze solar radiation data, extraterrestrial radiation, and radiation on earth's surface	
Design solar thermal collectors, solar thermal plants.	
Design solar photo voltaic systems.	
Develop maximum power point techniques in solar PV and wind energy systems.	
Explain wind energy conversion systems, wind generators, power generation.	
Explain basic principle and working of hydro, tidal, biomass, fuel cell and geothermal systems	

Course Nan	Course Name: RENEWABLE ENERGY SOURCES	
Course Cod	Course Code: EE3102	
EE3102.1	Analyze solar radiation data, extraterrestrial radiation, and radiation on earth's surface	
EE3102.2	Design solar thermal collectors, solar thermal plants.	
EE3102.3	Design solar photo voltaic systems.	
EE3102.4	Develop maximum power point techniques in solar PV and wind energy systems.	
EE3102.6	Explain basic principle and working of hydro, tidal, biomass, fuel cell and geothermal systems	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

III YEAR- I SEM

Course Nan	Course Name: SIGNALS SYSTEMS	
Course Cod	Course Code: EE3103	
EE3103.1	Characterize the signals and systems and principles of vector spaces, Concept of orthgonality	
EE3103.2	Analyze the continuous-time signals and continuous-time systems using Fourier series, Fourier transform and Laplace transform.	
EE3103.3	Apply sampling theorem to convert continuous-time signals to discrete-time signal and reconstruct back.	
EE3103.4	Understand the relationships among the various representations of LTI systems.	
EE3103.5	Understand the Concepts of convolution, correlation, Energy and Power density spectrum and their relationships.	
EE3103.6	Apply z-transform to analyze discrete-time signals and systems	

Course Nan	Course Name: PULSE AND DIGITAL CIRCUITS	
Course Cod	Course Code: EE3104	
EE3104.1	Design linear and non-linear wave shaping circuits.	
EE3104.2	Apply the fundamental concepts of wave for various switching and signal generating	
	circuits.	
EE3104.3	Design different multivibrators and time base generators.	
EE3104.4	Utilize the non sinusoidal signals in many experimental research areas.	
EE3104.5	Apply the fundamental concepts of wave shaping for various and signal generating	
	circuits.	
EE3104.6	Different multivibrators and base generators.	

Course Nan	Course Name: POWER ELECTRONICS	
Course Cod	Course Code: EE3105	
EE3105.1	Explain the characteristics of various power semiconductor devices and analyze the	
	static and dynamic characteristics of SCR's.	
EE3105.2	Design firing circuits for SCR.	
EE3105.3	Explain the operation of single phase full—wave converters and analyze harmonics in	
	the input current.	
EE3105.4	Explain the operation of three phase full—wave converters.	
EE3105.5	Analyze the operation of different types of DC-DC converters.	
EE3105.6	Explain the operation of inverters and application of PWM techniques for voltage	
	control and harmonic mitigation.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

Course Name: ELECTRICAL MACHINES – II LABORATORY		
Course Cod	Course Code: EE31L1	
EE31L1.1	Able to assess the performance of single phase and three phase induction motors.	
EE31L1.2	Able to control the speed of three phase induction motor.	
EE31L1.3	Able to predetermine the regulation of three–phase alternator by various methods.	
EE31L1.4	Able to find the Xd/ Xqratio of alternator and asses the performance of three–	
	phasesynchronous motor.	
EE31L1.5	Able to find the alternator and asses the performance of three–phasesynchronous	
	motor.	
EE31L1.6	Able to control the speed of three phase induction motor.	

Course Nan	Course Name: CONTROL SYSTEMS LAB	
Course Cod	Course Code: EE31L2	
EE31L2.1	Able to analyze the performance and working Magnetic amplifier, D.C and A.C.	
	servo motors and synchronous motors.	
EE31L2.2	Able to design P,PI,PD and PID controllers.	
EE31L2.3	Able to design lag, lead and lag-lead compensators.	
EE31L2.4	Able to control the temperature using PID controller.	
EE31L2.5	Able to determine the transfer function of D.C.motor.	
EE31L2.6	Able to control the position of D.C servo motor performance.	

Course Nam	Course Name: ELECTRICAL MEASUREMENTS LABORATORY	
Course Code	Course Code: EE31L3.	
EE31L3.1	To be able to measure the electrical parameters voltage, current, power.	
EE31L3.2	To be able to measure the current, power, energy and electrical characteristics of	
	resistance, inductance and capacitance	
EE31L3.3	To be able to measure the electrical parameters voltage, current, power, energy and	
	electrical characteristics of resistance.	
EE31L3.4	To be able to test transformer oil for its effectiveness.	
EE31L3.5	To be able to measure the parameters of inductive coil.	
EE31L3.6	Test transformer oil.	

III YEAR- II SEM

Course Nan	Course Name: POWER ELECTRONIC CONTROLLERS DRIVES	
Course Cod	Course Code: EE3201	
EE3201.2	Analyze the operation of three phase converter fed dc motors and four quadrant	
	operations of dc motors using dual converters.	
EE3201.3	Describe the converter control of dc motors in various quadrants of operation.	
EE3201.4	Know the concept of speed control of induction motor by using AC voltage	
	controllers and voltage source inverters.	
EE3201.5	Differentiate the stator side control and rotor side control of three phase induction	
	motor	
EE3201.6	Explain the speed control mechanism of synchronous motors.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

Course Nam	Course Name: POWER SYSTEM ANALYSIS	
Course Cod	Course Code: EE3202	
EE3202.1	Able to draw impedance diagram for a power system network and to understand per	
	unit quantities.	
EE3202.2	Able to form aybusand Zbusfor a power system networks.	
EE3202.3	Able to understand the load flow solution of a power system using different methods.	
EE3202.4	Able to find the fault currents for all types faults to provide data for the design of	
	protective devices.	
EE3202.5	Able to find the sequence components of currents for unbalanced power system	
	network.	
EE3202.6	Able to analyze the steady state, transient and dynamic stability concepts of a	
	power system.	

Course Nan	Course Name: MICROPROCESSORS AND MICROCONTROLLERS	
Course Cod	Course Code: EE3203.	
EE3203.1	To be able to understand the microprocessor capability in general and explore the	
	evaluation of microprocessors.	
EE3203.2	To be able to understand the addressing modes of microprocessors.	
EE3203.3	To be able to understand the micro controller capability.	
EE3203.4	To be able to program mp and mc.	
EE3203.5	To be able to interface mp and mc with other electronic devices.	
EE3203.6	To be able to write assembly language program using 8086 micro based on	
	Arithmetic, logical operations.	

Course Nan	Course Name: DATA STRUCTURES	
Course Cod	Course Code: EE3204.	
EE3204.1	Distinguish between procedures and object oriented programming.	
EE3204.2	Apply advanced data structure strategies for exploring complex data structures.	
EE3204.3	Compare and contrast various data structures and design techniques in the area of	
	Performance.	
EE3204.4	Incorporate data structures into the applications such as binary search trees, AVL	
	and B Trees.	
EE3204.5	Implement data structure algorithms through C++.	
EE3204.6	Implement all data structures like stacks, queues, trees, lists and graphs and compare	
	their Performance and trade offs.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

Course Nam	Course Name: Energy audit and conservation &management	
Course Cod	Course Code: EE3205	
EE3205.1	To understand artificial neuron models.	
EE3205.2	To understand learning methods of ANN.	
EE3205.3	To utilize different algorithms of ANN.	
EE3205.4	To distinguish between classical and fuzzy sets.	
EE3205.5	To understand different modules of fuzzy controller.	
EE3205.6	To understand applications of neural networks and fuzzy logic.	

Course Nam	Course Name: POWER ELECTRONICS LAB	
Course Cod	Course Code: EE32L1	
EE32L1.1	Able to study the characteristics of various power electronic devices and analyze gate drive circuits of IGBT.	
EE32L1.2	Able to analyze the performance of single–phase and three–phase full–wave bridge converters with both inductive loads	
EE32L1.3	Able to understand the operation of single phase AC voltage regulator with resistive and inductive loads.	
EE32L1.4	Able to understand the working of Buck converter, single—phase square wave inverter and PWM inverter.	
EE32L1.5	Able to understand the working of Boost converter, single—phase square wave inverter and PWM inverter.	
EE32L1.6	Able to analyze the performance of single–phase and three–phase full–wave bridge converters with both resistive loads	

Course Nam	Course Name: MICRO MPROCESSORS AND MICRO CONTROLLERS LAB	
Course Code	Course Code:EE32L2	
EE32L2.1	Will be able to write assembly language program using 8086 micro based on	
	arithmetic, logical, and shift operations.	
EE32L2.2	Will be able to interface 8086 with I/O and other devices.	
EE32L2.3	Will be able to do parallel communication using 8051 & PIC 18 micro controllers.	
EE32L2.4	Will be able to do serial communication using 8051 & PIC 18 micro controllers.	
EE32L2.5	Will be able to write assembly language program using 8086 micro based on logical,	
	and shift operations.	
EE32L2.6	Will be able to write assembly language program using 8086 micro based on	
	Arithmetic, logical operations.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

Course Nan	Course Name: Data structures lab	
Course Cod	Course Code: EE32L3	
EE32L3.1	Be able to design and analyze the time efficiency of the data structure	
EE32L3.2	Be capable to identity the appropriate data structure for given problem	
EE32L3.3	Have practical knowledge on the application of data structures	
EE32L3.4	Be able to design and analyze the space efficiency of the data structur	
EE32L3.5	Analyze simple linear and non linear data structures.	
EE32L3.6	Apply the suitable data structure for the given real world problem	

IV YEAR- I SEM

Course Nam	Course Name: UTILIZATION OF ELECTRICAL	
Course Code	Course Code: EE4101.	
EE4101.1	Able to identify a suitable motor for electric drives and industrial applications.	
EE4101.2	Able to identify most appropriate heating or welding techniques for suitable	
	applications.	
EE4101.3	Able to understand various level of illuminosity produced by different illuminating	
	sources.	
EE4101.4	Able to estimate the illumination levels produced by various sources and recommend	
	the most efficient illuminating sources and should be able to design different lighting	
	systems by taking inputs and constraints in view.	
EE4101.5	Able to determine the speed/time characteristics of different types of traction motors.	
EE4101.6	Able to estimate energy consumption levels at various modes of operation.	

Course Nan	Course Name: LINEAR IC APPLICATIONS	
Course Cod	Course Code: EE4102	
EE4102.1	Design circuits using operational amplifiers for various applications.	
EE4102.2	Analyze active filters using Op-amp.	
EE4102.3	Diagnose and trouble-shoot linear electronic circuits	
EE4102.4	Understand the gain-bandwidth concept and frequency response of the amplifier	
	configurations.	
EE4102.5	Analyze and design amplifiers.	
EE4102.6	Design operational amplifiers.	

Course Nan	Course Name: POWER SYSTEM OPERATION AND CONTROL	
Course Cod	Course Code: EE4103.	
EE4103.1	Able to compute optimal scheduling of Generators	
EE4103.2	Able to understand hydrothermal scheduling	
EE4103.3	Understand the unit commitment problem	
EE4103.4	Able to understand importance of the frequency	
EE4103.5	Understand importance of PID controllers in single area and two area systems.	
EE4103.6	Will understand reactive power control and compensation for transmission line.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

Course Nan	Course Name: SWITCHGEAR AND PROTECTION	
Course Cod	Course Code: EE4104.	
EE4104.1	Able to understand the principles of arc interruption for application to high voltage	
	circuit breakers of air, oil, vacuum, SF6 gas type.	
EE4104.2	Ability to understand the working principle and operation of different types of	
	electromagnetic protective relays.	
EE4104.3	Students acquire knowledge of faults and protective schemes for high power	
	generator and transformers	
EE4104.4	Improves the ability to understand various types of protective schemes used for	
	feeders and bus bar protection.	
EE4104.5	Able to understand different types of static relays and their applications.	
EE4104.6	Able to understand different types of over voltages and protective schemes required	
	For insulation co–ordination.	

Course Name: SPECIAL ELECTRICAL MACHINES		
Course Code: EE4105		
EE4105.1	Acquire proper knowledge to use various types of Transducers	
EE4105.2	Able to represent various types of signals	
EE4105.3	Acquire proper knowledge and working principle of various types of	
	Voltmeters.	
EE4105.4	Able to monitor and measure various parameters such as strain, velocity,	
	Temperature.	
EE4105.5	Acquire proper knowledge and able to handle various types of signal analyzers.	
EE4105.6	Acquire proper knowledge and working principle of various types of digital	
	Voltmeters.	

Course Name: ELECTRICAL SIMULATION LAB		
Course Code: EE41L1		
EE41L1.1	Able to simulate integrator circuit, differentiator circuit, Boost converter, Buck converter, full convertor and PWM inverter.	
EE41L1.2	Able to simulate transmission line by incorporating line, load and transformer models.	
EE41L1.3	Able to perform transient analysis of RLC circuit and single machine connected to Infinite bus(SMIB).	
EE41L1.4	Able to simulate integrator circuit, differentiator circuit.	
EE41L1.5	Able to simulate transmission line by incorporating line.	
EE41L1.6	Able to perform transient analysis of RLC circuit.	

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

www.eswarcollegeofengg.org, email:eswarcollegeofengg@gmail.com

Course Name: POWER SYSTEMS LAB	
Course Code: EE41L2	
EE41L2.1	State and formulate the optimization problem, without and with constraints, by using
	design variables from an engineering design problem.
EE41L2.2	Apply classical optimization techniques to minimize or maximize a multi-variable
	objective function, without or with constraints, and arrive at an optimal solution.
EE41L2.3	Formulate a mathematical model and apply linear programming technique by using
	Simplex method. Also extend the concept of dual Simplex method for optimal
	solutions.
EE41L2.4	Apply gradient and non-gradient methods to nonlinear optimization problems and
	useinterior or exterior penalty functions for the constraints to derive the optimal
	solutions.
EE41L2.5	Able to apply Genetic algorithms for simple electrical problems.
EE41L2.6	Able to solve practical problems using PSO.

IV YEAR-II SEM

COURSE NAME: DIGITAL CONTROL SYSTEMS	
COURSE CODE: EE4201	
EE4201.1	The students learn the advantages of discrete time control systems and the "know
	how" of various associated accessories.
EE4201.2	The learner understand z-transformations and their role in the mathematical analysis
	of different systems(like laplace transforms in analog systems).
EE4201.3	The stability criterion for digital systems and methods adopted for testing the same
	are explained.
EE4201.4	Finally, the conventional and state space methods of design are also introduced.
EE4201.5	Mathematical analysis of different systems.
EE4201.6	Stability criterion for digital systems and methods.

COURSE NAME: H.V.D.C. TRANSMISSION	
COURSE CODE: EE4202	
EE4202.1	Learn different types of hvdc levels and basic concepts.
EE4202.2	Know the operation of converters.
EE4202.3	Acquire control concept of reactive power control and ac/dc loadflow.
EE4202.4	Understand converter faults, protection and harmonic effects.
EE4202.5	Design low pass and high pass filters.
EE4202.6	Understand converter faults, protection.

(Approved by AICTE, & Affiliated to JNTUK, A.P.) KESANUPALLI (V), NARASARAOPETA-522549, AP

COURSE NAME: ELECTRICAL DISTRIBUTION SYSTEMS		
COURSE CODE: EE4203		
EE4203.1	Able to understand various factors of distribution system.	
EE4203.2	Able to design the substation and feeders.	
EE4203.3	Able to determine the voltage drop and power loss	
EE4203.4	Able to understand the protection and its coordination	
EE4203.5	Able to understand the effect of compensation forp.f improvement	
EE4203.6	Able to understand the effect of voltage control	

COURSE NAME: FLEXIBLE ALTERNATING CURRENT TRANSMISSION SYSTEM		
COURSE CODE: EE4204		
EE4204.1	Will understand importance of power system deregulation and restructuring.	
EE4204.2	Able to compute available transfer capability.	
EE4204.3	Will understand transmission congestion management.	
EE4204.4	Able to compute electricity pricing in deregulated environment	
EE4204.5	Will be able to understand power system operation in deregulated environment.	
EE4204.6	Will understand importance of ancillary services	